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ABSTRACT

L ’ -
\

- Using randomly censored data, we develop a test of the null hypothesis
that a new item has stochastically the same residual lifelength as does a
used item of specified age tG’ versus the alternative hypothesis that a new

item has stochastically greater residual lifelength than does a used item

.

of age ty We ;lso compare our test with a related test, developed for a

:

complete-data model, in order to study the loss in efficiency because of

censoring.
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1. INTRODUCTION
Suppose a cancer specialist believes that a patient newly diagnosed as
having a certain type of cancer has a smaller chance of survival than does a

patient who has survived S years following a similar initial diagnosis. How

can such a claim be tested? To address such a testing problem, Hollander,
Park, and Proschan (1983) introduced the class Gl of '"new better than used

at to" life distributions and the dual class Gz of "new worse than used at

to" life distributions.

Gl’ the new better than used at to alass. Let t.>0., A life distribution

g 0
% F (i.e., a distribution such that F(x) = 0 for all x < 0) is new better than o
used at ty if "
F(tho) < F(x)?(to) for all x2 0, (1.1) ‘
where F = 1-F denotes the survival function. S

62, the new worse than used at ty class. A life distribution F is new
worse than used at t0 if the first inequality in (1.1) is reversed. {

We now describe another context in which the concept of new worse than :
used at to finds practical application. For many electronic components,
experience shows that the failure rate of a component is higher during the
so-called "infant-mortality phase' (say [o,tO]) than after t,- This could
be the consequence of the fact that there are really two populations which
have been mixed during manufacture - one population consists of well made
units, while the second population consists of poorly made units whose
defects show up immediately upon initial use or shortly thereafter.

The practical procedure used by manufacturers of such components is to
"burn-in" a portion of their product during (O, tO]; surviving components of

age t, sell at a higher price than new untested components. The purchaser
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who needs higher than usual! quality for say, space vehicle assembly, safety

equipment, surgical devices, etc., is willing to pay for the statistically
' higher quality units of age to.
‘ The manufacturer or one of his high volume customers may be highly
motivated to carry out the statistical test proposed in this paper to

corroborate his engineering experience and judgement.

Gl[GZ] is related to but contains and is much larger than the class

HI[HZ] of "new better than used" ["new worse than used"] distributions
defined below.

Hl' the new better than used class. A life distribution F is new better.
? than used if
k F(x*t) s F(x)F(t) for a1l x, t 2 0. (1.2)

H.., the new worse than used class. A life distribution F is new worse

2!
than used if it satisfies (1.2) with the first inequality reversed.

Thus the G1 property states that a used item of age t; has stochastically
smaller residual lifelength than does a new item whereas the H1 property ]
?‘ states that a used item of any age has stochastically smaller residual life- i 1
length than does a new item. Analogous interpretations hold for G2 and HZ‘ -

The only members in HlnH2 are the exponential distributions. Theorem 2
of Marsaglia and Tubilla (1975) shows that the only members of waGz are
(a) exponential distributions, (b) survival functions F for which F(0)=1
‘l and P(t0)=0, and (c) survival functions of the form F*(x)=F(x) for Osx<t,,
= Fj(to)F(x-jto) for jtysx<(j+1)ty, j=0,1,2, ..., where F is a survival
function defined for x20. If F has a density function on [O,to], then the

failure rate of F* is periodic with period t,,

Py
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Some examples of new better than used life distrisﬁtions are the Weibull
where Fe(t) = l-exp(-(xt)e). t20,1220, 621 and the gamma where
Fo(t) = [0a%®! expl-ax)/ree), t20, 120, 02 1.

Let C* be the class of life distributions which are not new better than
used but are new better than used at to. Hollander, Park, and Proschan (1983)
give the following method of constructing some distribution functions in C*.
Suppose that G is a new better than used distribution with failure rate function
rG(x) >0 for 0 € x <o, Let F have a failure rate function e satisfying

(i)rp(x) < rG(x) for 0 s x < tos (ii)rp(x) s rG(x) for t, < x <®, and

0

(iii)rF(x) is strictly decreasing for 0 <t < tl’ where 0 < t, < to. Then

F € C*. To develop an example of this construction, let rc(x) = 1 for

0 £x <, and let rr(x) = 1-(9/t0)x for 0sx<t, and 0 <8 s1, and

0
rF(x) =1 for to €S x <=, (We do not let 6 exceed 1 since we want to ensure
that rp(x) remains positive as x - toe) Then g satisfies (i), (ii), and

(iii) and thus F is in C*. The corresponding survival function can be written

as
f-e(t) = exp[-{t-e(Zto)'ltz}]. 0<6s1,0st<t,
= exp[-{t-8(2)"'tg}], 0 <8 51, t 2.
Hollander, Park, and Proschan (1983) derived a test of
Hy: FeG nG, (1.3)
versus
Hy: Fe Gl* (1.4)
where

G,* = {F: F(x+to) < ?(x)?(to) for all

x 2 0 and inequality holds for some x 2 0}.

— e — *7--——-3

heea 0
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The null hypothesis Ho asserts that a new item has stochastically the same

residual lifelength as does a used item of age t (Equivalently F satisfies

0
Ho if it satisfies (1.1) where the first inequality is replaced by an equality.)
The alternative hypothesis HA asserts that a new item has stochastically
greater residual lifelength than does a used item of age ty. The test proposed
by Hollander, Park, and Proschan was for the model where we obtain a complete
random sample from the life distribution F. In the present paper we propose

a test of H, versus H, based on a randomly right-censored sample. The test is
derived in Section 2. In Section 3 we compare the tests for the uncensored

and censored models and obtain a measure of the loss in efficiency incurred

because of censoring. Section 4 contains an example.

2. ATEST OF H, VERSUS H, USING INCOMPLETE DATA Ty

0

Let xl, eeey xn be independent and identically distributed according to
a continuous life distribution F, and Yl. ey Yn be independent and identi-
kli cally distributed according to a continuous censoring distribution H. Also,

{ let the X's be independent of the Y's. The censoring distribution H is

typically, though not necessarily, unknown and is treated as a nuisance

1Pt Xn,

but instead, we observe the pairs (Zi, Gi), i=1, ..., n, vhere

parameter. In the randomly censored model we do not observe X

zi = min(xi,Yi)

and
1 if Zi = xi

0 if Zi = Yi .
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Our test is based on an estimator of the parameter

T(F) = [{F(xet)) - F()F(ty) }aF(x)
0

- gﬁ(xoto)dF(x) --%F(to).

Under Ho, T(F) = 0 whereas under H,, T(F) < 0. In fact, since F is assumed
continuous, under H,, T(F) is strictly less than 0. T(F) gives a measure of
the deviation of F from Ho towards H,- It is natural to base a test of H0
versus HA on a consistent estimator of T(F), and we utilize T(ﬁn) where ﬁn
is the Kaplan-Meier (1958) estimator. (Such an approach has been used by many
authors including Efron (1967) in the context of a two-sample location test,
by Koziol and Green (1976) and CsSrgé and Horvath (1981) in testing goodness-
of-fit, and by Chen, Hollander, and Langberg (1983a) in testing whether new
is better than used.)

Under the assumption that F is continuous, the Kaplan-Meier estimator can

be expressed as

: 5.,
F(t) = 1 (-1 (n-ien)" Yy B, ¢ ¢ po, Zeny)
n (1:24,5t)

where Z ) £ 0 < Z(l) < ... < z(n) denote the ordered Z2's and G(i) is the §

(0
corresponding to z(i). Here we treat z(n) as an uncensored observation, 4

whether it is uncensored or censored. When censored observations are tied

with uncensored observations, our convention for ordering the Z's is to treat

the uncensored observations as preceding the censored observations. - 4
Weak convergence of the Kaplan-Meier estimator, regarded as a stochastic ]

process, has been established by Efron (1967), Breslow and Crowley (1974),

]
1
Meier (1975), and Gill (1983). Strong consistency of the estimator was ]

proved by Peterson (1977) and Langberg, Proschan, and Quinzi (1981). Exact




small-sample moments of Fn’ under a model of proportional hazards, were
obtained by Chen, Hollander, and Langberg (1982).

Our test statistic is

def. @, a
-r: = T(R) = gf-‘n(xtto)dﬁn(x) - 5P (2.
For computational purposes we may rewrite T: as

n é

T: = J n {(n-k)(n-k*l)'ll ()
i=l ““z(k)‘z(i)"o)
i-1 S,.

[ 1 {{n-1) (n-ﬂl)-l}c(r)] . [1-{@-1) (n-i+1)"1) (1)]

r=1

§
-3 T ARkl ®,
{R:Z(k)sto}

Aﬁiﬁptotic normality of nllz{T:~T(c)} can be established under the
assump}ions

6A.l) The support of both F and H is [0,«).

(A.2) sup([?(x)]l-e[ﬁ(x)]-l, x € [0,2)} < » for some ¢ 2 0.

Condition (A.2) restricts the amount of censoring. For example, in the
proportional hazards model where H(t) = {F(t))e, (A.2) implies that B < I,
which means that the expected proportion of censored observations g/g+1
must be less than .S.

We now state the main result of this section and then sketch its proof.

THEOREM 1. Assume that (A.1) and (A.2) hold. Then n

1/2(7: - T(F)} converges

in distribution to a normal random variable with mean 0 and variance o: given

by equation (2.1) below.
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Sketeh of Proof. Forn=1, 2, ..., the expression for T: - T(F) can be

written as:
1€ - T(F) = [(F (et -Fxet) MF (x)-[{F (xotp)-Flxst ) HF (x)

, + [R(xot)daF_(x) - [E(xot)dF(x)

o JE (oot )dF(0) - [B(xot)dF(x)

1
T

n(to) * %ﬁ(to)‘

Unless otherwise specified, all integrals range over (0, ). Upon integration

by parts and change of variables, we have:
fF(x*t )dF (x)- jF(x+to)dF(x) s -]F (x-to)dF(x)+fF(x- JAF(x), n=1, 2, ... .

Thus forn=1, 2, ...,

1/2 C = \
n (Tn-T(F)) B“’1 + Bn,2’

where

B ] 1/Z{F (x+t0) F(x+to)}dF (x)- fn /2{F (x+t0) F(x+to)}dF(x),

n,1
and

[nl/z[F (x+t -?(x+to)-{?n(x-to)-i(x-to)}-%{ﬁn(to)-ﬁcto)}]ds(x).

0
Using Theorem 2.1 of Gill (1983) and arguments similar to those in the
proofs of Lemmas 2.2 and 2.3 of Chen, Hollander, and Langberg (1983a), we
can show that
(a) Bn y converges in probability to zero,
»

(b) B converges in distribution to the random variable

n,2

Zy = flolxst)-o(x-t ) - 26(t ) }F(x), and

]
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(c) The random variable Zo is normal with mean 0 and finite variance
2
Oc = IIE{¢(X+t0)'¢(x'to) - %¢(to)} d {¢(u’to)'¢(u’to) - %¢(to)}dF(X)dF(U)- (2'1)

Here {¢(t), te(0,»)} is the Gaussian process which is the limit of the
Kaplan-Meier estimator regarded as a stochastic process. The mean of ¢(t)
is zero and its covariance kernel is
s
Eo(t)o(s) = F(t)F(s) g (K(2)F(z)} 1dF(z), 0 s s < t < =, (2.2)

where K(t) = F(t)fi(t). This concludes the sketch.

The null asynptotic mean of nllzTg is zero, independent of the distri-
butions F and H. However, the null asymptotic variance of nI/ZTﬁ depends

on both F and H and thus it must be estimated from the incomplete observa-
tions (21.61), cons (Zn,Gn). Under H0 it can be shown, after straight-

forward but tedious integration using the expressions for 02 and E¢(t)¢(s)
1/2Tc

given in (2.1) and (2.2), that the null asymptotic variance of n n is:

o2 * (1/4)§2(t0)£?3(z){i(z+to)}'ldF(z)
(2.3)

» WP BP@ R - 2R ) [P R e
0 0

2

If there is no censoring, that is, if K(z) = F(z) for z ¢ [0, =), then %0

reduces to (1/12)F(t0)+(1/12)Fz(to)-(1/6)?3(to). This expression agrees
with the null asymptotic variance og of the statistic nl/zT(é ) (where é

n n
is the empirical distribution function of a random sample from F) advanced
by Hollander, Park, and Proschan (1983) for testing Hy in the complete data
case. Expression (2.3) can be simplified, by a change of variable in the

first and third terms, to

i




'ﬁvv. ﬁ‘v o
i

. Jame

-9 -

ago = (1/4){F(zp) Y2 B3 ) (Rew) 1 YR )
t
0

(2.4
22 T=3 oo -1 T 23, ropna-1
+ (1/4)F (to)IF (u){K(u)} "dF(u) - (l/2)f F (u){K(u)} "dF(u).
0 t;
To obtain our estimator of aio we introduce some notation. Let
s s o0 s - . i i
Z(l) Z(n) denote the ordered Z-values. Let Kn denote the empirical
distribution function of the Z-values. Thus nKn(t) = "number of Z-values s t."
. c . .
Since Tn =0 whfn Z(n) s t;, we will assume our sample is such that Z(n) > to.
Replacing F bylﬁn. K by K,» and « by Z(n) in (2.4) yields the estimate Gzn
defined by (2.5).
a2 2 -2
O%n = [(1/4){Fn(to)} - (1/2)]
. ) B3w & oV UE o )-F ))
{izt sW.. <z nt (i) nt(1) nt (i)’ nt(i-1)
07" (1) " (n)
(2.5)

£2
+ (1/4)F (t)
n 0 {i:1gist(n)}

3
n

2 - -1.2 ~

where W ) S0 <W <W are the ordered observed

< ... <W
(o (1) 2, (t(n))
failure times, and 1(n) = Z Gi is th2 total number of failures among the
i=1
n observations.

We are unable to prove that Gzn consistently estimates 030 under our

(A.1), (A.2) assumptions, but we have investigated properties of azn via

a limited Monte Carlo study. Table 1 investigates the accuracy of ng as
2

an estimator of %0 and the accuracy of the normal approximation in the

cases where F is exponential with scale parameter 1 and H is exponential
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with scale parameter A, for the choices A=.1 and A=1/3, with t =.6,1, and

0
n=100, 150,200. Column 2 of Table 1 gives the average value of azn, averaged

over 1,000 Monte Carlo replications. Column 3 gives the sample standard
deviation s of the 1,000 azn values. It is seen that O:n tends to be below
the true value ozo, but the estimator improves as n increases.

The approximate a-level test of Ho versus HA’ which rejects H0 in favor

l/ZTcA-l

ncn S -z, and accepts Ho otherwise, is called the NBU-t

of HA if n test.

0
The approximate a-level test of Ho versus the alternative that a new item has

stoéhastically smaller residual lifelength than does a used item of age t
1/2

0

Tca-l 22

0 ncn a

otherwise. Here zZ, is the upper a-percentile point of a

is called the NWU-t . test. The NWU-t0 test rejects H0 if n
and accepts Ho
standard normal distribution. Columns 4,5,6,7,8,9 pertain to the convergence

I/ZTCG-I .

to asymptotic normality of the standardized test statistic T* = n ncn

Columns 4,5,6 give estimated probabilities of the events {T* < -za}, and
columns 7,8,9 give estimated probabilities of the events {T* 2 za}.

e = .10,.05,.01. It is seen that the convergence to asymptotic normality

is slow. The probability a assigned to the event {T* < —zn} by the normal
approximation is less than the corresponding Monte Carlo estimate 5{T* < -za}.
Thus the NBU-to test based on the normal approximation tends to give P values
that are less than the true P values. The probability a assigned to the
event {T* 2 zc} by the normal approximation is greater than the correspondiig
Monte Carlo estimate P{T* 2 z }. Thus the NWU-t, test based on the normal

0
approximation tends to give P values that are greater than the true P values.
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3. EFFICIENCY LOSS DUE TO CENSORING -

In this section we study the efficiency loss from censoring by comparing
the efficacy of the test based on Tn = T(an) for the uncensored model with
the efficacy of the test based on T: for the randomly censored model. Also
we present a monotonicity property of the efficiency as the amount of censor-
ing increases.

Since Tﬁ and 'l‘n have the same asymptotic means, the value of 1-R, where
- c _ 2,2
R - eF,H(Tn, Tn) - co/ocog

can be taken as a measure of the efficiency loss due to censoring (cf. Chen,
Hollander, and Langberg, 1983a). Here og and aio are the null asymptotic
/2 /2

variances of n1 Tn and n1 T: respectively.
We consider the case where the censoring distribution is exponential
with parameter A and the life distribution is exponential with parameter 1.

To satisfy Condition (A.2) we take A < 1. Then we have

o = anze O (1/12)e-2t° - wee o,
°:o = {1/4(3-2)} - (e-(l-X)to + e-Zto - Ze'(5'1)to).
and
R = {1-(1/3)}(1+e-t°-ze-2t°)/(ekt°+e-t°-ze-(2-x)t°). (.1

In Table 2, values of R given by (3.1) are presented for several
choices of t and A < 1. The table shows that as A decreases, the value of
R increases to 1. Note that A = 0 implies no censoring. The table also
shows that as t, increases, the efficiency of T: with respect to Tn

decreases.
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The next theorem shows that if Hz is stochastically smaller than H1
(i.e., there tend to be more censored observations with censoring distri-
bution H2 than with Hl)’ then the efficiency of T: with respect to Tn under

H1 is greater than under H2'

THEOREM 2. Assume that H1 < Hz, where H, and H2 are censoring distributions.

1
_ c c
Then R, 2 R2, where R1 = eF,Hl(Tn’ T,) and R, = eF,Hz(Tn’ Tn)-

Proof. Since the numerator of ®E H (T:, Tn) i = 1,2, does not depend on
el
. 2 12 2 i il e
H, it suffices to show that aco(Hl) s oco(Hz) where aco(H) is given by (2.4).
(Recall that K = Fi.) Since H, s H, we have [!.{1]'1 < [ﬁzl-l. Note that
2 < s . P TS | . 2 2

oco(H) is increasing in [H] ~. Thus, it follows that oco(Hl) < °c0(H2)'
Consequently, the desired result follows.

From Theorem 2, it immediately follows that the maximum value of R is
equal to 1 and is achieved when ﬁ(x) £ 1 for x 2 0, that is, when there is

no censoring.

Table 2. Efficiency of T: with respect to T_ when Fxy=e*, x20

Ax

and H(x) = e, x20, 2> 0

. A 1/2 1/4 1/8 1/20 1/60 1/100

0
.2 .9008 .9514 .9759 .9904 .9968 .9981
.6 .7265 .8583 .9280 .9709 .9903 .9942
1.0 5823 | .1 .8804 -9509 .9835 .9901
1.4 .4652 -6907 -8338 .9307 -9765 .9858
2.0 .3325 .5843 .7673 -9003 .9657 .9793
3.0 -1931 .4442 -6686 -8520 -9482 19686
4.0 .1136 .3411 .5854 .8077 .9314 .9583
5.0 0688 | .2639 | .5146 -7670 .9154 -9484
.
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4. AN EXAMPLE.

The data in Table 3 are an updated version of data analyzed by Koziol
and Green (1976). The data correspond to 211 State IV prostate cancer
patients treated with estrogen in a study by the Veterans Administration
Cooperative Urological Research Group (1967). By the ltarch 1977 closing
date, 90 patients had died of prostate cancer, 105 had died of other diseases,
and 16 were still alive. The latter 121 observations will be treated as

censored observations (withdrawals).

Table 3. Survival times and withdrawal times in months for 211 patients
(with number of ties given in parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3),
17(2), 18, 19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2),
30, 31, 32(3), 33(2), 34, 35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3), 46,
47(2), 48(2), 51, S53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2), 100,
145, 158.
Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5),7(5), 8, 9(2), 10, 11,
12(3), 13(3), 14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 23, 25, 27, 28, 31,
32, 34, 35, 37, 38(4), 39(2), 44(3), 46, 47, 48, 49, 50, 53(2), S5, 56, 59,
61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2), 105, 109,
119(2), 125, 127, 129, 131, 133(2), 135, 136(2), 138, 141, 142, 143, 144,
148, 160, 164(3).

Koziol and Green (1976) stated that experience had suggested that had
the patients not been treated with estrogen, their survival distribution F
for deaths from cancer of the prostate could be taken to be exponential with
a mean of 100 months. With this in mind, various authors have applied
goodness-of-fit tests to the prostate cancer data. A recent reference is
Cssrgs and Horvath (1981) whose procedures indicate lack of support for the
simple null hypothesis that F is exponential with mean 100. (Csorgo and

Horvith also discuss other references relating to tests of this simple null

hypothesis,)
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Tests of the composite null hypothesis of exponentiality (with unspeci- -
fied mean) were performed by Chen (1981), Chen, Hollander, and Langberg
(1983a), and Chen, Hollander, and Langberg (1983b). These tests indicated
lack of support for the hypothesis of exponential aging. Chen, Hollander, -
and Langberg (1983b) also plotted an empirical mean residual life function
for the data of Table 3. Their plot tends to decrease up to around 25 months,
then tends to increase up to about 70 months, and then decreases again. .
The null hypothesis Ho (1.3) of this paper is appropriate if one has
a priori reasons to suspect that a patient after to months would have sto-
chastically the same residual lifelength as a new patient. However, we are -
not aware of any such a priori notions in this prostate cancer setting, and

there is no natural value of to. Hence, our test is performed primarily for

purposes of illustration. With the choice t, = 60, we find T§11 = ,0116, -
.2 = 1/2 C “-l - e

0.211 .3354, and (211) T211°c211 = ,290, a value supporting HO.
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